Costante matematica
Una costante matematica è un numero che ha un significato speciale per i calcoli. Per esempio, la costante π (pronunciato "pie") significa il rapporto tra la circonferenza di un cerchio e il suo diametro. Questo valore è sempre lo stesso per qualsiasi cerchio. Una costante matematica è spesso un numero reale non integrale di interesse.
A differenza delle costanti fisiche, le costanti matematiche non provengono da misure fisiche.
Costanti matematiche chiave
La seguente tabella contiene alcune importanti costanti matematiche:
Nome | Simbolo | Valore | Significato |
Pi greco, costante di Archimede o numero di Ludoph | π | ≈3.141592653589793 | Un numero trascendentale che è il rapporto tra la lunghezza della circonferenza di un cerchio e il suo diametro. È anche l'area del cerchio unitario. |
E, costante di Napier | e | ≈2.718281828459045 | Un numero trascendentale che è la base dei logaritmi naturali, talvolta chiamato "numero naturale". |
φ | 5 + 1 2 ≈ 1,618 {displaystyle {frac {{sqrt {5}+1}{2}}approx 1,618} | È il valore di un valore maggiore diviso per un valore minore se questo è uguale al valore della somma dei valori diviso per il valore maggiore. | |
Radice quadrata di 2, costante di Pitagora | 2 {displaystyle {sqrt {2}} | 1.414 | Un numero irrazionale che è la lunghezza della diagonale di un quadrato con lati di lunghezza 1. Questo numero non può essere scritto come frazione. |
La seguente tabella contiene un elenco di costanti e serie in matematica, con le seguenti colonne:
- Valore: Valore numerico della costante.
- LaTeX: Formula o serie in formato TeX.
- Formula: Per l'uso in programmi come Mathematica o Wolfram Alpha.
- OEIS: Link alla On-Line Encyclopedia of Integer Sequences (OEIS), dove le costanti sono disponibili con maggiori dettagli.
- Frazione continua: Nella forma semplice [a intero; frac1, frac2, frac3, ...] (tra parentesi se periodica)
- Tipo:
- R - Numero razionale
- I - Numero irrazionale
- T - Numero trascendentale
- C - Numero complesso
Nota che la lista può essere ordinata in modo corrispondente cliccando sul titolo dell'intestazione in cima alla tabella.
Valore | Nome | Simbolo | LaTeX | Formula | Tipo | OEIS | Frazione continua |
3.24697960371746706105000976800847962 | Argento, costante Tutte-Beraha | {\an8}(*Città che si trova al centro della città.) | 2 + 2 cos ( 2 π / 7 ) = 2 + 2 + 7 + 7 7 + 7 + 7 + ⋯ 3 3 3 1 + 7 + 7 7 + 7 + ⋯ 3 3 3 {\displaystyle 2+2\cos(2\pi /7)={textstyle 2+{\frac {2+{{sqrt[3}]{7+7{{sqrt[3}]{7+7{sqrt[3}]},7+\cdots }}}}}}}{1+{\sqrt[{3}]{7+7{\sqrt[{3}]{7+7{\sqrt[{3}]{\,7+\cdots }}}}}}}}} | 2+2 cos(2Pi/7) | T | A116425 | [3;4,20,2,3,1,6,10,5,2,2,1,2,2,1,18,1,1,3,2,...] |
1.09864196439415648573466891734359621 | Parigi costante | C P a {displaystyle C_{Pa}} | ∏ n = 2 ∞ 2 φ φ + φ n , φ = F i {\displaystyle \prod _{n=2}^{\infty }{frac {2\varphi }{varphi +\varphi _{n}}};,\varphi ={Fi}} | I | A105415 | [1;10,7,3,1,3,1,5,1,4,2,7,1,2,3,22,1,2,5,2,1,...] | |
2.74723827493230433305746518613420282 | Ramanujan annidato radicale R5 | R 5 {displaystyle R_{5} | 5 + 5 + 5 - 5 + 5 + 5 + 5 - ⋯ = 2 + 5 + 15 - 6 5 2 {\displaystyle \scriptstyle {sqrt {5+{sqrt {5+{sqrt {5-{sqrt {5+{sqrt {5+{sqrt {5+{sqrt {5+{sqrt }}}}}}}}}}}}}}\;==textstyle{frac {2+{sqrt {5}+{sqrt {15-6{sqrt {5}}}}}{2}} | (2+sqrt(5)+sqrt(15-6 sqrt(5)))/2 | I | [2;1,2,1,21,1,7,2,1,1,2,1,2,1,17,4,4,1,1,4,2,...] | |
2.23606797749978969640917366873127624 | Radice quadrata di 5, somma di Gauss | 5 {displaystyle {sqrt {5}} | ∀ n = 5 , ∑ k = 0 n - 1 e 2 k 2 π i n = 1 + e 2 π i 5 + e 8 π i 5 + e 18 π i 5 + e 32 π i 5 {displaystyle \scriptstyle \forall \\=5,\displaystyle \sum _{k=0}^{n-1}e^{\frac {2k^{2}\pi i}}=1+e^{\frac {2\pi i}{5}+e^{\frac {8\pi i}{5}+e^{\frac {18\pi i}{5}}} | Somma[k=0 a 4]{e^(2k^2 pi i/5)} | I | A002163 | [2;4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,...] |
3.62560990822190831193068515586767200 | Gamma(1/4) | Γ ( 1 4 ) {displaystyle \Gamma ({tfrac {1}{4}})} | 4 ( 1 4 ) ! = ( − 3 4 ) ! {\fscala 4\frac {1}{4}} a destra!=\frac {3}{4} a destra)= a sinistra(-{frac {3}{4}} a destra)! } | 4(1/4)! | T | A068466 | [3;1,1,1,2,25,4,9,1,1,8,4,1,6,1,1,19,1,1,4,1,...] |
0.18785964246206712024851793405427323 | Costante MRB, Marvin Ray Burns | C M R B {\displaystyle C_{_{MRB}}} | ∑ n = 1 ∞ ( - 1 ) n ( n 1 / n - 1 ) = - 1 1 + 2 2 - 3 3 + 4 4 ... {\displaystyle \sum _{n=1}^{infty }({-}1)^{n}(n^{1/n}{-}1)=-{sqrt[1}]{1}+{sqrt[2}]{2}-{sqrt[3}]{3}+{sqrt[4}]{4}},\punti} | Somma[n=1 a ∞]{(-1)^n (n^(1/n)-1)} | T | A037077 | [0;5,3,10,1,1,4,1,1,1,1,9,1,1,12,2,17,2,2,1,...] |
0.11494204485329620070104015746959874 | Costante di Keplero-Bouwkamp | ρ {displaystyle {rho} | ∏ n = 3 ∞ cos ( π n ) = cos ( π 3 ) cos ( π 4 ) cos ( π 5 ) ... {displaystyle \prod _{n=3}^{infty }cos \left({\frac 3)=cos \sinistra(4)=cos \sinistra(4)=cos \sinistra(5)=destra)=cos \sinistra(4)=destra)=cos \sinistra(5)=punti | prod[n=3 a ∞]{cos(pi/n)} | T | A085365 | [0;8,1,2,2,1,272,2,1,41,6,1,3,1,1,26,4,1,1,...] |
1.78107241799019798523650410310717954 | Exp(gamma) | e γ {displaystyle e^{gamma} | ∏ n = 1 ∞ e 1 n 1 + 1 n = ∏ n = 0 ∞ ( ∏ k = 0 n ( k + 1 ) ( - 1 ) k + 1 ( n k ) ) 1 n + 1 = {\displaystyle \prod _{n=1}^{infty }{frac {e^{frac {1}{n}}}}{1+{tfrac {1}{n}}}}=\prod _{n=0}^{infty }{left(\prod _{k=0}^{n}(k+1)^{(-1)^{k+1}{n ¡scegliere k}}{right)^{\frac {1}{n+1}}=} ( 2 1 ) 1 / 2 ( 2 2 1 ⋅ 3 ) 1 / 3 ( 2 3 ⋅ 4 1 ⋅ 3 3 ) 1 / 4 ( 2 4 ⋅ 4 4 1 ⋅ 3 6 ⋅ 5 ) 1 / 5 ... {\displaystyle \textstyle \left({\frac {2}{1}}}right)^{1/2} {\frac 3) a destra)1/3) a sinistra(2) a sinistra(2) a destra(3) a destra)1/4) a sinistra(2) a destra(4) a sinistra(1) a destra)1/5) a sinistra(2) a destra(4) a destra(1) a destra(6) a destra) | Prod[n=1 a ∞]{e^(1/n)}/{1 + 1/n} | T | A073004 | [1;1,3,1,1,3,5,4,1,1,2,2,1,7,9,1,16,1,1,1,2,...] |
1.28242712910062263687534256886979172 | Costante di Glaisher-Kinkelin | A {\displaystyle {A} | e 1 12 - ζ ′ ( - 1 ) = e 1 8 - 1 2 ∑ n = 0 ∞ 1 n + 1 ∑ k = 0 n ( - 1 ) k ( n k ) ( k + 1 ) 2 ln ( k + 1 ) {displaystyle e^{{\frac {1}{12}}-\zeta ^{\prime }(-1)}=e^{{frac {1}{8}-{frac {1}{2}} somma \limiti _{n=0}^{infty }{frac {1}{n+1}}} somma \limiti _{k=0}^{n} a sinistra (-1) a destra)^{k}{binom {n}{k}} a sinistra (k+1) a destra)^{2}ln(k+1)}} | e^(1/2-zeta´{-1}) | T | A074962 | [1;3,1,1,5,1,1,1,3,12,4,1,271,1,1,2,7,1,35,...] |
7.38905609893065022723042746057500781 | Costante conica di Schwarzschild | e 2 {displaystyle e^{2}} | ∑ n = 0 ∞ 2 n n ! = 1 + 2 + 2 2 2 ! + 2 3 3 ! + 2 4 4 ! + 2 5 5 ! + ... {\displaystyle \sum _{n=0}^{\infty }{\frac {2^{n}}{n!}=1+2+{\frac {2^{2}{2!}+{frac {2^{3}{3!}+{\frac {2^{4}{4!}+{\frac {2^{5}{5!}+punti } | Somma[n=0 a ∞]{2^n/n!} | T | A072334 | [7;2,1,1,3,18,5,1,1,6,30,8,1,1,9,42,11,1,...] |
1.01494160640965362502120255427452028 | Costante di Gieseking | G G i {displaystyle {G_{Gi}} | 3 3 4 ( 1 - ∑ n = 0 ∞ 1 ( 3 n + 2 ) 2 + ∑ n = 1 ∞ 1 ( 3 n + 1 ) 2 ) = {\displaystyle {\frac {3{sqrt {3}}}{4}} a sinistra(1-somma _{n=0}^{infty }{frac {1}{(3n+2)^{2}}}+somma _{n=1}^{infty }{frac {1}{(3n+1)^{2}}} diritto)=} 3 3 4 ( 1 - 1 2 2 + 1 4 2 - 1 5 2 + 1 7 2 - 1 8 2 + 1 10 2 ± ... ) {\displaystyle \textstyle {\frac {3{sqrt {3}}{4}} a sinistra(1-{\frac {1}{2^{2}}}+{frac {1}{4^{2}}}-{frac {1}{5^{2}}}+{frac {1}{7^{2}}-{frac {1}{8^{2}}+{frac {1}{10^{2}}}pm \punti \destra)} . | T | A143298 | [1;66,1,12,1,2,1,4,2,1,3,3,1,4,1,56,2,2,11,...] | |
2.62205755429211981046483958989111941 | Lemniscata costante | ϖ {displaystyle {varpi} | π G = 4 2 π ( 1 4 ! ) 2 {displaystyle \pi \pi \G}=4{sqrt {\tfrac {2}{\pi}},({\tfrac {1}{4}}!)^{2}} | 4 sqrt(2/pi) (1/4!)^2 | T | A062539 | [2;1,1,1,1,1,4,1,2,5,1,1,1,14,9,2,6,2,9,4,1,...] |
0.83462684167407318628142973279904680 | Costante di Gauss | G {displaystyle {G} | 1 a g m ( 1 , 2 ) = 4 2 ( 1 4 ! ) 2 π 3 / 2 A g m : A r i t h m e t i c - g e o m e t r i c m e n t o {\displaystyle {\underset {Agm:\;Aritmetico-geometrico\;media}{\frac {1}{mathrm {agm} (1,{\sqrt {2})}}={frac {4{sqrt {2}},({\tfrac {1}{4}!)^{2}}{\pi ^{3/2}}}}}} | (4 sqrt(2)(1/4!)^2)/pi^(3/2) | T | A014549 | [0;1,5,21,3,4,14,1,1,1,1,1,3,1,15,1,3,7,1,...] |
1.01734306198444913971451792979092052 | Zeta(6) | ζ ( 6 ) {\displaystyle \zeta (6)} | π 6 945 = ∏ n = 1 ∞ 1 1 - p n - 6 p n : p r i m o = 1 1 - 2 - 6 ⋅ 1 1 - 3 - 6 ⋅ 1 1 - 5 - 6 . . . {\displaystyle {\frac {\pi ^{6}}{945}=prod _{n=1}^{infty }{underset {p_{n}:\,{primo}}}{frac {1}{1}-p_{n}^{-6}}}}={frac {1}{1{1{-}2^{-6}}{\frac {1}{1{1{-}3^{-6}}{\frac {1}{1}{1{1{-}5^{-6}}}... } | Prod[n=1 a ∞] {1/(1-ithprime(n)^-6)} | T | A013664 | [1;57,1,1,1,15,1,6,3,61,1,5,3,1,6,1,3,3,6,1,...] |
0,60792710185402662866327677925836583 | Costante di Hafner-Sarnak-McCurley | 1 ζ ( 2 ) {displaystyle {frac {1}{{zeta (2)}} | 6 π 2 = ∏ n = 0 ∞ ( 1 - 1 p n 2 ) p n : p r i m o = ( 1 - 1 2 2 ) ( 1 - 1 3 2 ) ( 1 - 1 5 2 ) ... {\displaystyle {\frac {6}{\pi ^{2}}}{=}prod _{n=0}^{\infty }{underset {p_{n}:{\an8}{primo}}{{{1}frac {1}{{p_{n}}^{2}}}destra)}}{{textstyle \left(1{-}{{frac {1}{2^{2}}}destra)\left(1{-}{frac {1}{3^{2}}}destra)\left(1{-}{frac {1}{5^{2}}}destra)\punti } | Prod{n=1 a ∞} (1-1/ithprime(n)^2) | T | A059956 | [0;1,1,1,1,4,2,4,7,1,4,2,3,4,10,1,2,1,1,1,...] |
1.11072073453959156175397024751517342 | Il rapporto tra un quadrato e i cerchi circoscritti o inscritti | π 2 2 2 {displaystyle {frac {pipi}{2{sqrt {2}}}}} | ∑ n = 1 ∞ ( - 1 ) ⌊ n - 1 2 ⌋ 2 n + 1 = 1 1 + 1 3 - 1 5 - 1 7 + 1 9 + 1 11 - ... {\displaystyle \sum _{n=1}^{\infty }(-1)^{{lfloor {\frac {n-1}{2}{2n+1}}}={frac {1}{1}}+{frac {1}{3}-{frac {1}{5}-{frac {1}{7}+{frac {1}{9}+{frac {1}{11}}- punti} | sum[n=1 a ∞]{(-1)^(floor((n-1)/2))/(2n-1)} | T | A093954 | [1;9,31,1,1,17,2,3,3,2,3,1,1,2,2,1,4,9,1,3,...] |
2.80777024202851936522150118655777293 | Costante di Fransén-Robinson | F {displaystyle {F} | ∫ 0 ∞ 1 Γ ( x ) d x . = e + ∫ 0 ∞ e - x π 2 + ln 2 x d x {displaystyle \int _{0}^{\infty }{frac {1}{Gamma (x)}},dx.=e+{\int _{0}^{\infty }{{\frac {e^{-x}}{\frac {e^{{\2}+ln ^{2}x},dx} | N[int[0 a ∞] {1/Gamma(x)}] | T | A058655 | [2;1,4,4,1,18,5,1,3,4,1,5,3,6,1,1,1,5,1,1,1...] |
1.64872127070012814684865078781416357 | Radice quadrata del numero e | e {displaystyle {sqrt {e}} | ∑ n = 0 ∞ 1 2 n n ! = ∑ n = 0 ∞ 1 ( 2 n ) ! ! = 1 1 + 1 2 + 1 8 + 1 48 + ⋯ {\displaystyle \sum _{n=0}^{\infty }{\frac {1}{2^{n}n!}=\sum _{n=0}^{\infty }{\frac {1}{(2n)!!}={\frac {1}{1}}+{\frac {1}{2}+{\frac {1}{8}+{\frac{48}}} | somma[n=0 a ∞]{1/(2^n n!)} | T | A019774 | [1;1,1,1,1,5,1,1,9,1,1,1,13,1,1,17,1,1,21,1,1,...] |
i | i {displaystyle {i} | - 1 = ln ( - 1 ) π e i π = - 1 {\displaystyle {\sqrt {-1}={frac {\ln(-1)}{\sqquadro \qquadro \mathrm {e} ^{i\,\pi\=-1} | sqrt(-1) | ||||
262537412640768743.999999999999250073 | Costante di Hermite-Ramanujan | R {displaystyle {R} | e π 163 {displaystyle e^{{pi {163}}}} | e^(π sqrt(163)) | T | A060295 | [262537412640768743;1,1333462407511,1,8,1,1,5,...] |
4.81047738096535165547303566670383313 | Giovanni costante | γ γ γ γ γ γ γ γ γ γ γ | i i = i - i = i 1 i = ( i i ) - 1 = e π 2 {\displaystyle {\sqrt[{i}]{i}}=i^{-i}=i^{frac {1}{i}=(i^{i})^{-1}=e^{frac {\pi}{2}} | e^(π/2) | T | A042972 | [4;1,4,3,1,1,1,1,1,1,1,1,7,1,20,1,3,6,10,3,...] |
4.53236014182719380962768294571666681 | Costante de Van der Pauw | αdisplaystyle \alpha } | π l n ( 2 ) = ∑ n = 0 ∞ 4 ( - 1 ) n 2 n + 1 ∑ n = 1 ∞ ( - 1 ) n + 1 n = 4 1 - 4 3 + 4 5 - 4 7 + 4 9 - ... 1 1 - 1 2 + 1 3 - 1 4 + 1 5 - ... {\displaystyle {\frac {\frac {\pi }{ln(2)}={\frac {sum _{n=0}^{infty }{\frac {4(-1)^{n}}{2n+1}}}{sum _{n=1}^{infty }{frac {(-1)^{n+1}}{n}}}}={{frac {{4}{1}}{-}{frac {4}{3}}{+}{frac {4}{5}}{-{4}{4}{7}}{+}{4}{9}}- punti }{frac {1}{1}{-}{frac {1}{2}{+}{frac {1}{3}{-}{frac {1}{4}{+}{1}{5}}- punti}} | π/ln(2) | T | A163973 | [4;1,1,7,4,2,3,3,1,4,1,1,4,7,2,3,3,12,2,1,...] |
0.76159415595576488811945828260479359 | Tangente iperbolica (1) | t h 1 {displaystyle th\,1} | e - 1 e e + 1 e = e 2 - 1 e 2 + 1 {displaystyle {{frac {e-{frac {1}{e}}}{e+{frac {1}{e}}}}={frac {e^{2}-1}{e^{2}+1}} | (e-1/e)/(e+1/e) | T | A073744 | [0;1,3,5,7,9,11,13,15,17,19,21,23,25,27,...] |
0.69777465796400798200679059255175260 | Costante di frazione continua | C C F {C} {C}_{CF} | J 1 ( 2 ) J 0 ( 2 ) F u n z i o n e J k ( ) B e s s e l = ∑ n = 0 ∞ n ! n ! ∑ n = 0 ∞ 1 n ! n ! = 0 1 + 1 1 + 2 4 + 3 36 + 4 576 + ... 1 1 + 1 1 + 1 4 + 1 36 + 1 576 + ... {\displaystyle {\underset {J_{k}(){Bessel}}{underset {Funzione}{frac {J_{1}(2)}{J_{0}(2)}}}}={frac {sum \limits _{n=0}^{\infty}{\frac {n}{n!n!={sum \limiti _{n=0}^{infty}^{frac {1}{n!n!}}}}={{frac {0}{1}}+{frac {1}{1}}+{frac {2}{4}}+{frac {3}{36}}+{frac {4}{576}}+puntini }{frac {1}{1}}+{frac {1}{1}{1}+{frac {1}{4}}+{frac {1}{36}}+{frac {1}{576}}} | (somma {n=0 a inf} n/(n!n!)) /(somma {n=0 a inf} 1/(n!n!)) | A052119 | [0;1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,...] | |
0.36787944117144232159552377016146086 | Costante di Napier inversa | 1 e {displaystyle {frac {1}{e}} | ∑ n = 0 ∞ ( - 1 ) n n ! = 1 0 ! - − 1 1 ! + 1 2 ! - − 1 3 ! + 1 4 ! - − 1 5 ! + ... {displaystyle \sum _{n=0}^{\infty }{\frac {(-1)^{n}}{n!}={\frac {1}{0!}-{\frac {1}{1!}+{\frac {1}{2!}-{\frac {1}{3!}+{\frac {1}{4!}-{\frac {1}{5!}+\frac {\frac {\frac {\frac}{1}{2} | somma[n=2 a ∞]{(-1)^n/n!} | T | A068985 | [0;2,1,1,1,2,1,1,4,1,1,1,6,1,1,1,8,1,1,10,1,1,12,...] |
2.71828182845904523536028747135266250 | Costante di Napier | e {displaystyle e} | ∑ n = 0 ∞ 1 n ! = 1 0 ! + 1 1 + 1 2 ! + 1 3 ! + 1 4 ! + 1 5 ! + ⋯ {displaystyle \sum _{n=0}^{infty }{frac {1}{n!}={frac {1}{0!}+{frac {1}{1}{1}}+{frac {1}{2!}+{frac {1}{3!}+{frac {1}{4!}+{frac {1}{5!}+cdots } | Somma[n=0 a ∞]{1/n!} | T | A001113 | [2;1,2,1,1,1,4,1,1,1,6,1,1,1,8,1,1,10,1,1,1,12,1,...] |
0.49801566811835604271369111746219809 | Fattoriale di i | i ! i ! } | Γ ( 1 + i ) = i Γ ( i ) {\displaystyle \Gamma (1+i)=i\,\Gamma (i)} | Gamma(1+i) | A212877 | [0;6,2,4,1,8,1,46,2,2,3,5,1,10,7,5,1,7,2,...] | |
0.43828293672703211162697516355126482 | Infinito | ∞ i {displaystyle {}^{infty }i} | lim n → ∞ n i = lim n → ∞ i i ⋅ ⋅ i ⏟ n {\displaystyle \lim _{n\a6}^{n}i=lim _{n\a6} a \a6} i=lim _{n\a6} a \a6} sottobraccio {i^{i^{{{\a6}cdot ^{\a6}}}}}} _{n}} | i^i^i^... | A077589 | [0;2,3,1,1,4,2,2,1,10,2,1,3,1,8,2,1,2,1, ...] | |
0.56755516330695782538461314419245334 | Modulo di | {\an8}(*Circostanza) | lim n → ∞ | n i | = | lim n → ∞ i i ⋅ ⋅ i ⏟ n | {\displaystyle \lim _{n{ a sinistra ∞ i ⏟ n | {\displaystyle \lim _{ a sinistra ∞ i ⏟ ⏟ ⏟ ⏟ ⏟ ⏟ ⏟ ⏟ i {\an8}destra} | Mod(i^i^i^...) | A212479 | [0;1,1,3,4,1,58,12,1,51,1,4,12,1,1,2,2,3,...] | |
0.26149721284764278375542683860869585 | Costante di Meissel-Mertens | M {displaystyle M} | lim n → ∞ ( ∑ p ≤ n 1 p - ln ( ln ( n ) ) ) {\displaystyle \lim _{n\code(01)\destra \infty}(\somma _{p\leq n}{frac {1}{p}}- \ln(\ln(n))\destra)} ..... p: primati | A077761 | [0;3,1,4,1,2,5,2,1,1,1,1,13,4,2,4,2,1,33,...] | ||
1.9287800... | Costante di Wright | ω \displaystyle \omega } | ⌊ 2 2 2 ⋅ ⋅ 2 ω ⌋ {displaystyle 【left\lfloor 2^{2^{2^{2^{cdot ^{cdot ^{2^{omega }}}}}}\right\rfloor } = primos: ‗displaystyle', ‗quadro'. ⌊ 2 2 2 ω ⌋ {displaystyle )left\lfloor 2^{2^{2^{omega}}}destra\rfloor } =16381, ... {displaystyle )punti} | A086238 | [1; 1, 13, 24, 2, 1, 1, 3, 1, 1, 3] | ||
0.37395581361920228805472805434641641 | Artin costante | C A r t i n {displaystyle C_Artin} | ∏ n = 1 ∞ ( 1 - 1 p n ( p n - 1 ) ) {\displaystyle \prod _{n=1}^{\infty}left(1-{frac {1}{p_{n}(p_{n}-1)}}right)} ...... pn: primo | T | A005596 | [0;2,1,2,14,1,1,2,3,5,1,3,1,5,1,1,2,3,5,46,...] | |
4.66920160910299067185320382046620161 | Costante di Feigenbaum δ | δ {displaystyle {delta} | lim n → ∞ x n + 1 - x n x n + 2 - x n + 1 x ∈ ( 3 , 8284 ; 3 , 8495 ) {\displaystyle \lim _{n{to \infty }{frac {x_{n+1}-x_{n}}{x_{n+2}-x_{n+1}}}}qquad \scriptstyle x\in (3,8284;\,3,8495)} x n + 1 = a x n ( 1 - x n ) o x n + 1 = a sin ( x n ) {\displaystyle \scriptstyle x_{n+1}=\,ax_{n}(1-x_{n})\quad {o}quad x_{n+1}=\,a\sin(x_{n})} | T | A006890 | [4;1,2,43,2,163,2,3,1,1,2,5,1,2,3,80,2,5,...] | |
2.50290787509589282228390287321821578 | Costante di Feigenbaum α | αdisplaystyle \alpha } | lim n → ∞ d n d n + 1 {displaystyle \lim _{n\a6} a \infty }{frac {d_{n}}{d_{n+1}}}} | T | A006891 | [2;1,1,85,2,8,1,10,16,3,8,9,2,1,40,1,2,3,...] | |
5.97798681217834912266905331933922774 | Madelung esagonale costante 2 | H 2 ( 2 ) {\displaystyle H_{2}(2)} | π ln ( 3 ) 3 {displaystyle \pi \ln(3){sqrt {3}} | Pi Log[3]Sqrt[3] | T | A086055 | [5;1,44,2,2,1,15,1,1,12,1,65,11,1,3,1,1,...] |
0.96894614625936938048363484584691860 | Beta(3) | β ( 3 ) {\displaystyle \beta (3)} | π 3 32 = ∑ n = 1 ∞ - 1 n + 1 ( - 1 + 2 n ) 3 = 1 1 3 - 1 3 3 + 1 5 3 - 1 7 3 + ... {\displaystyle {\frac {\frac {\pi ^{3}{32}}=somma _{n=1}^{infty }{\frac {-1^{n+1}}{(-1+2n)^{3}}={frac {1}{1^{3}}{-}{frac {1}{3^{3}}{+}{frac {1}{5^{3}}{-}{frac {1}{7^{3}}{+} punti } | Somma[n=1 a ∞]{(-1)^(n+1)/(-1+2n)^3} | T | A153071 | [0;1,31,4,1,18,21,1,1,2,1,2,1,3,6,3,28,1,...] |
1.902160583104 | Brun costante 2 = Σ primati gemelli inversi | B 2 {displaystyle B_{\2} | ∑ ( 1 p + 1 p + 2 ) p , p + 2 : p r i m o s = ( 1 3 + 1 5 ) + ( 1 5 + 1 7 ) + ( 1 11 + 1 13 ) + ... {\displaystyle \textstyle \sum {underset {p,\,p+2:\primos}}{({\frac {1}{p}}+{\frac {1}{p+2}})}}=({\frac {1}{3}}{+}{\frac {1}{5})+({\tfrac {1}{5}{+}{\tfrac {1}{7})+({\tfrac {1}{11}{+}{\tfrac {1}{13})+\punti} | A065421 | [1; 1, 9, 4, 1, 1, 8, 3, 4, 4, 2, 2] | ||
0.870588379975 | Brun costante 4 = Σ inverso del primo gemello | B 4 {displaystyle B_{\4} | ( 1 5 + 1 7 + 1 11 + 1 13 ) p , p + 2 , p + 4 , p + 6 : p r i m e s + ( 1 11 + 1 13 + 1 17 + 1 19 ) + ... {\displaystyle {\underset {p,\2,p,p+4,\6:\primi}}}{sinistra(\tfrac {1}{5}+{tfrac {1}{7}}+{tfrac {1}{11}}+{tfrac {1}{13}}destra)}}+sinistra(\tfrac {1}{11}+{tfrac {1}{13}}+{tfrac {1}{17}}+{tfrac {1}{19}}destra)+\punti } | A213007 | [0; 1, 6, 1, 2, 1, 2, 956, 3, 1, 1] | ||
22.4591577183610454734271522045437350 | pi^e | π e {displaystyle \pi ^{e} | π e {displaystyle \pi ^{e} | pi^e | A059850 | [22;2,5,1,1,1,1,1,3,2,1,1,3,9,15,25,1,1,5,...] | |
3.14159265358979323846264338327950288 | π \displaystyle \più | lim n → ∞ 2 n 2 - 2 + 2 + ⋯ + 2 ⏟ n {\displaystyle \lim _{n a \infty},2^{n} sottobraccio {sqrt {2-{sqrt {2+{sqrt {2+punti +{sqrt {2}}}}}}}} _{n}} | Somma[n=0 a ∞]{(-1)^n 4/(2n+1)} | T | A000796 | [3;7,15,1,292,1,1,1,2,1,3,1,14,...] | |
0.06598803584531253707679018759684642 | e - e {\displaystyle e^{-e}} | e - e {\displaystyle e^{-e}} ... Limite inferiore della tetrazione | T | A073230 | [0;15,6,2,13,1,3,6,2,1,1,5,1,1,1,9,4,1,1,1,...] | ||
0.20787957635076190854695561983497877 | i^i | i i {\displaystyle i^{i} | e - π 2 {{displaystyle e^{frac {-\pi}{2}} | e^(-pi/2) | T | A049006 | [0;4,1,4,3,1,1,1,1,1,1,1,1,7,1,20,1,3,6,10,...] |
0.28016949902386913303643649123067200 | Costante di Bernstein | β {displaystyle \beta } | 1 2 π {displaystyle {frac {1}{2{sqrt {{pi }}}}} | T | A073001 | [0;3,1,1,3,9,6,3,1,3,13,1,16,3,3,4,…] | |
0.28878809508660242127889972192923078 | Flajolet e Richmond | Q {displaystyle Q} | ∏ n = 1 ∞ ( 1 - 1 2 n ) = ( 1 - 1 2 1 ) ( 1 - 1 2 2 ) ( 1 - 1 2 3 ) ... {\displaystyle \prod _{n=1}^{\infty}left(1-{\frac {1}{2^{n}}}}destra)==sinistra(1{-}{frac {1}{2^{1}}}destra)\sinistra(1{-}{frac {1}{2^{2}}}destra)\sinistra(1{-}{frac {1}{2^{3}}}destra)\punti } | prod[n=1 a ∞]{1-1/2^n} | A048651 | ||
0.31830988618379067153776752674502872 | Inverso di Pi, Ramanujan | 1 π {displaystyle {frac {1}{\pi}} | 2 2 9801 ∑ n = 0 ∞ ( 4 n ) ! ( 1103 + 26390 n ) ( n ! ) 4 396 4 n {\displaystyle {\frac {2{\sqrt {2}}{9801}}}{sum _{n=0}^{infty }{frac {(4n)!(1103+26390n)}{(n!)^{4}396^{4n}}}} | T | A049541 | [0;3,7,15,292,1,1,1,2,1,3,1,14,2,1,1,...] | |
0.47494937998792065033250463632798297 | Costante Weierstraß | W W E {\displaystyle W_{_{WE}}} | e π 8 π 4 ∗ 2 3 / 4 ( 1 4 ! ) 2 {displaystyle {e^{{frac {\frac {\pi }8}{sqrt {\pi}}{4*2^{3/4}{({\frac {1}{4}}!)^{2}}}}} | (E^(Pi/8) Sqrt[Pi])/(4 2^(3/4) (1/4)!^2) | T | A094692 | [0;2,9,2,11,1,6,1,4,6,3,19,9,217,1,2,...] |
0.56714329040978387299996866221035555 | Costante Omega | Ω {displaystyle \mega } | W ( 1 ) = ∑ n = 1 ∞ ( - n ) n - 1 n ! = 1 - 1 + 3 2 - 8 3 + 125 24 - ... {\displaystyle W(1)={sum _{n=1}^{\infty }{\frac {(-n)^{n-1}}}{n!}=1{-}1{+}{\frac {3}{2}{-}{\frac {8}{3}{+}{125}{24}- punti } | sum[n=1 a ∞]{(-n)^(n-1)/n!} | T | A030178 | [0;1,1,3,4,2,10,4,1,1,1,1,2,7,306,1,5,1,...] |
0.57721566490153286060651209008240243 | γ γ γ γ γ γ γ γ γ γ γ | - ψ ( 1 ) = ∑ n = 1 ∞ ∑ k = 0 ∞ ( - 1 ) k 2 n + k {\displaystyle -\psi (1)=sum _{n=1}^{\infty }{sum _{k=0}^{\infty }{frac {(-1)^{k}}{2^{n}+k}}} | somma[n=1 a ∞]|somma[k=0 a ∞]{((-1)^k)/(2^n+k)} | ? | A001620 | [0;1,1,2,1,2,1,4,3,13,5,1,1,8,1,2,...] | |
0.60459978807807261686469275254738524 | Serie di Dirichlet | π 3 3 3 {displaystyle {frac {pipi}{3{sqrt {3}}}}} | ∑ n = 1 ∞ 1 n ( 2 n n ) = 1 - 1 2 + 1 4 - 1 5 + 1 7 - 1 8 + ⋯ {displaystyle \sum _{n=1}^{\infty }{frac {1}{n{2n \scegliere n}}}=1-1... 1... 2... + 1... 4... 4... 4... 5... + 1... 7... 7... 8... 8... | Somma[1/(n Binomio[2 n, n]), {n, 1, ∞}] | T | A073010 | [0;1,1,1,1,8,10,2,2,3,3,1,9,2,5,4,1,27,27,...] |
0.63661977236758134307553505349005745 | 2/Pi, François Viète | 2 π {displaystyle {frac {2}{\i} | 2 2 ⋅ 2 + 2 2 ⋅ 2 + 2 + 2 2 ⋯ {displaystyle {frac {sqrt {2}{2}}}cdot {frac {sqrt {2+{sqrt {2}}}}{2}}cdot {frac {sqrt {2+{sqrt {2}}}}}}{2}} | T | A060294 | [0;1,1,1,3,31,1,145,1,4,2,8,1,6,1,2,3,1,4,...] | |
0.66016181584686957392781211001455577 | Costante primaria gemella | C 2 {displaystyle C_{2} | ∏ p = 3 ∞ p ( p - 2 ) ( p - 1 ) 2 {displaystyle \prod _{p=3}^{infty }{frac {p(p-2)}{(p-1)^{2}}}} | prod[p=3 a ∞]{p(p-2)/(p-1)^2 | A005597 | [0;1,1,1,16,2,2,2,2,1,18,2,2,11,1,1,2,4,1,...] | |
0.66274341934918158097474209710925290 | Costante del limite di Laplace | λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ | A033259 | [0;1,1,1,27,1,1,1,8,2,154,2,4,1,5,...] | |||
0.69314718055994530941723212145817657 | Logaritmo di 2 | L n ( 2 ) {\displaystyle Ln(2)} | ∑ n = 1 ∞ ( - 1 ) n + 1 n = 1 1 - 1 2 + 1 3 - 1 4 + 1 5 - ⋯ {\displaystyle \sum _{n=1}^{\infty }{\frac {(-1)^{n+1}}{n}={frac {1}}{1}}-{frac {1}{2}}+{frac {1}{3}}-{frac {1}{4}+{frac {1}{5}}-\cdots } | Somma[n=1 a ∞]{(-1)^(n+1)/n} | T | A002162 | [0;1,2,3,1,6,3,1,1,2,1,1,1,1,3,10,...] |
0.78343051071213440705926438652697546 | Il sogno del secondo anno 1 J.Bernoulli | I 1 {displaystyle I_{1}} | ∑ n = 1 ∞ ( - 1 ) n + 1 n n = 1 - 1 2 2 + 1 3 3 - 1 4 4 + 1 5 5 + ... {\displaystyle \sum _{n=1}^{\infty }{frac {(-1)^{n+1}}{n^{n}}}=1-{frac {1}{2^{2}}+{frac {1}{3^{3}}-{frac {1}{4^{4}}+{frac {1}{5^{5}}++punti } | Somma[ -(-1)^n /n^n] | T | A083648 | [0;1,3,1,1,1,1,1,1,2,4,7,2,1,2,1,1,1,...] |
0.78539816339744830961566084581987572 | Dirichlet beta(1) | β ( 1 ) {\displaystyle \beta (1)} | π 4 = ∑ n = 0 ∞ ( - 1 ) n 2 n + 1 = 1 1 - 1 3 + 1 5 - 1 7 + 1 9 - ⋯ {\displaystyle {\frac {\frac {\pi }4}}=somma _{n=0}^{infty }{\frac {(-1)^{n}}{2n+1}}={frac {1}{1}}-{frac {1}{3}}+{frac {1}{5}}-{frac {1}{7}}+{frac {1}{9}}-\code(01)} | Somma[n=0 a ∞]{(-1)^n/(2n+1)} | T | A003881 | [0; 1,3,1,1,1,15,2,72,1,9,1,17,1,2,1,5,...] |
0.82246703342411321823620758332301259 | Commesso viaggiatore Nielsen-Ramanujan | ζ ( 2 ) 2 {displaystyle {\frac {\zeta (2)}{2}} | π 2 12 = ∑ n = 1 ∞ ( - 1 ) n + 1 n 2 = 1 1 2 - 1 2 2 + 1 3 2 - 1 4 2 + 1 5 2 - ... {\displaystyle {\frac {\pi ^{2}}{12}}=sum _{n=1}^{infty }{\frac {(-1)^{n+1}}}{n^{2}}={frac {1}{1^{2}}{-}{frac {1}{2^{2}}{+}{frac {1}{3^{2}}{-}{frac {1}{4^{2}}{+}{frac {1}{5^{2}}- punti } | Somma[n=1 a ∞]{((-1)^(k+1))/n^2} | T | A072691 | [0;1,4,1,1,1,2,1,1,1,1,3,2,2,4,1,1,1,...] |
0.91596559417721901505460351493238411 | Costante catalana | C {displaystyle C} | ∑ n = 0 ∞ ( - 1 ) n ( 2 n + 1 ) 2 = 1 1 2 - 1 3 2 + 1 5 2 - 1 7 2 + ⋯ {\displaystyle \sum _{n=0}^{\infty }{frac {(-1)^{n}}{(2n+1)^{2}}={frac {1}{1^{2}}-{frac {1}{3^{2}}+{frac {1}{5^{2}}-{frac {1}{7^{2}}+\cdots } | Somma[n=0 a ∞]{(-1)^n/(2n+1)^2} | I | A006752 | [0;1,10,1,8,1,88,4,1,1,7,22,1,2,...] |
1.05946309435929526456182529494634170 | Rapporto della distanza tra i semitoni | 2 12 {displaystyle {sqrt[12}]{2}} | 2 12 {displaystyle {sqrt[12}]{2}} | 2^(1/12) | I | A010774 | [1;16,1,4,2,7,1,1,2,2,7,4,1,2,1,60,1,3,1,2,...] |
1,.08232323371113819151600369654116790 | Zeta(04) | ζ 4 {displaystyle \zeta {4} | π 4 90 = ∑ n = 1 ∞ 1 n 4 = 1 1 4 + 1 2 4 + 1 3 4 + 1 4 4 + 1 5 4 + ... {\displaystyle {\frac {{pi ^{4}{90}}=somma _{n=1}^{infty {\frac {1}{n^{4}}}={frac {1}{1^{4}}+{frac {1}{2^{4}}+{frac {1}{3^{4}}+{frac {1}{4^{4}}+{frac {1}{5^{4}}+punti } | Somma[n=1 a ∞]{1/n^4} | T | A013662 | [1;12,6,1,3,1,4,183,1,1,2,1,3,1,1,5,4,2,7,...] |
1.1319882487943 ... | Viswanaths costante | C V i {displaystyle C_{Vi} | lim n → ∞ | a n | 1 n {displaystyle \lim _{n\to \infty }|a_{n}|^{frac {1}{n}}} | A078416 | [1;7,1,1,2,1,3,2,1,2,1,8,1,5,1,1,1,9,1,...] | ||
1.20205690315959428539973816151144999 | Costante di apetito | ζ ( 3 ) {\displaystyle \zeta (3)} | ∑ n = 1 ∞ 1 n 3 = 1 1 3 + 1 2 3 + 1 3 3 + 1 4 3 + 1 5 3 + ⋯ {displaystyle \sum _{n=1}^{infty }^{infty }{frac {1}{n^{3}}={frac {1}{1^{3}}+{frac {1}{2^{3}}+{frac {1}{3^{3}}+{frac {1}{4^{3}}+{frac {1}{5^{3}}+capitoli \, } | Somma[n=1 a ∞]{1/n^3} | I | A010774 | [1;4,1,18,1,1,1,4,1,9,9,2,1,1,1,2,...] |
1.22541670246517764512909830336289053 | Gamma(3/4) | Γ ( 3 4 ) {displaystyle \Gamma ({tfrac {3}{4}})} | ( − 1 + 3 4 ) ! { {\frac {\frac {3}{4}} a destra) ! } | (-1+3/4)! | T | A068465 | [1;4,2,3,2,2,1,1,1,2,1,4,7,1,171,3,2,3,1,1,...] |
1.23370055013616982735431137498451889 | Costante di Favard | 3 4 ζ ( 2 ) {displaystyle {\tfrac {3}{4}}\zeta (2)} | π 2 8 = ∑ n = 0 ∞ 1 ( 2 n - 1 ) 2 = 1 1 2 + 1 3 2 + 1 5 2 + 1 7 2 + ... {\displaystyle {\frac {\frac {\pi ^{2}}{8}=somma _{n=0}^{infty }{\frac {1}{(2n-1)^{2}}}={frac {1}{1}{1^{2}}+{frac {1}{3^{2}}+{frac {1}{5^{2}}+{frac {1}{7^{2}}+puntini } | somma[n=1 a ∞]{1/((2n-1)^2)} | T | A111003 | [1;4,3,1,1,2,2,5,1,1,1,1,2,1,2,1,10,4,3,1,1,...] |
1.25992104989487316476721060727822835 | Radice al cubo di 2, costante Delian | 2 3 {displaystyle {sqrt[3}]{2}} | 2 3 {displaystyle {sqrt[3}]{2}} | 2^(1/3) | I | A002580 | [1;3,1,5,1,1,4,1,1,8,1,14,1,10,...] |
1.29128599706266354040728259059560054 | Il sogno del secondo anno 2 J.Bernoulli | I 2 {displaystyle I_{2} | ∑ n = 1 ∞ 1 n n = 1 + 1 2 2 + 1 3 3 + 1 4 4 + 1 5 5 + 1 6 6 + ... {\displaystyle \sum _{n=1}^{infty }{frac {1}{n^{n}}}=1+{frac {1}{2^{2}}+{frac {1}{3^{3}}+{frac {1}{4^{4}}+{frac {1}{5^{5}}+{frac {1}{6^{6}}+{punti } | Somma[1/(n^n]), {n, 1, ∞}] | A073009 | [1;3,2,3,4,3,1,2,1,1,6,7,2,5,3,1,2,1,8,1,...] | |
1.32471795724474602596090885447809734 | Numero di plastica | ρ {displaystyle \rho } | 1 + 1 + 1 + 1 + 1 + ⋯ 3 3 3 3 3 {displaystyle {sqrt[3}]{1+{sqrt[3}]{1+{sqrt[3}]{1+{sqrt[3}]{1+{sqrt[3}]{1+\cdots }}}}}}}}} | I | A060006 | [1;3,12,1,1,3,2,3,2,4,2,141,80,2,5,1,2,8,...] | |
1.41421356237309504880168872420969808 | Radice quadrata di 2, costante di Pitagora | 2 {displaystyle {sqrt {2}} | ∏ n = 1 ∞ 1 + ( - 1 ) n + 1 2 n - 1 = ( 1 + 1 1 ) ( 1 - 1 3 ) ( 1 + 1 5 ) . . . {\displaystyle \prod _{n=1}^{\infty }1+{\frac {(-1)^{n+1}}{2n-1}}==sinistra(1{+}{\frac {1}{1}}}destra)\sinistra(1{-}{\frac {1}{3}}destra)\sinistra(1{+}{\frac {1}{5}}destra)... } | prod[n=1 a ∞]{1+(-1)^(n+1)/(2n-1)} | I | A002193 | [1;2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,...] |
1.44466786100976613365833910859643022 | Numero di Steiner | e 1 e {\displaystyle e^{frac {1}{e}}} | e 1 / e {\displaystyle e^{1/e}} ... Limite superiore della tetrazione | A073229 | [1;2,4,55,27,1,1,16,9,3,2,8,3,2,1,1,4,1,9,...] | ||
1.53960071783900203869106341467188655 | Lieb's Square Ice costante | W 2 D {\displaystyle W_{2D}} | lim n → ∞ ( f ( n ) ) n - 2 = ( 4 3 ) 3 2 {displaystyle \lim _{n{ a \infty }(f(n))^{n^{-2}}={ a sinistra({\frac {4}{3}} a destra)^{frac {3}{2}} | (4/3)^(3/2) | I | A118273 | [1;1,1,5,1,4,2,1,6,1,6,1,2,4,1,5,1,1,2,...] |
1.57079632679489661923132169163975144 | Prodotto Wallis | π / 2 {displaystyle \pi /2} | ∏ n = 1 ∞ ( 4 n 2 4 n 2 - 1 ) = 2 1 ⋅ 2 3 ⋅ 4 3 ⋅ 4 5 ⋅ 6 5 ⋅ 6 7 ⋅ 8 7 ⋅ 8 9 ⋯ {\displaystyle \prod _{n=1}^{\infty}left({\frac {4n^{2}}{4n^{2}-1}destra)={frac {2}{1}}}cdot {2}{3}}{frac {4}{3}}{frac {4}{5}}{frac {6}{5}}{frac {6}{7}}{frac {8}{7}{8}{9}} | T | A019669 | [1;1,1,3,31,1,145,1,4,2,8,1,6,1,2,3,1...] | |
1.60669515241529176378330152319092458 | costante di Erdős-Borwein | E B {\anime E_{\anime,B}} | n = 1 ∑ 1 ∞ 1 2 n - 1 = 1 1 + 1 3 + 1 7 + 1 15 + ⋯ {displaystyle \sum _{n=1}^{infty }{frac {1}{2^{n}-1}}={frac {1}{1}}}+{frac {1}{3}}+{frac {1}{7}}+{frac {1}{15}}+{cdots,\cdots! } | somma[n=1 a ∞]{1/(2^n-1)} | I | A065442 | [1;1,1,1,1,5,2,1,2,29,4,1,2,2,2,2,6,1,7,1,...] |
1.61803398874989484820458633436563812 | Phi, rapporto aureo | φ {displaystyle \varphi } | 1 + 5 2 = 1 + 1 + 1 + 1 + 1 + ⋯ {displaystyle {frac {1+{sqrt {5}}{2}={sqrt {1+{sqrt {1+{sqrt {1+{sqrt {1+{punti }}}}}}}}} | (1+5^(1/2))/2 | I | A001622 | [0;1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,...] |
1.64493406684822643647241516664602519 | Zeta(2) | ζ ( 2 ) {\displaystyle \zeta (\2)} | π 2 6 = ∑ n = 1 ∞ 1 n 2 = 1 1 2 + 1 2 2 + 1 3 2 + 1 4 2 + ⋯ {displaystyle {\frac {{pi ^{2}}{6}=somma _{n=1}}^{infty }{frac {1}{n^{2}}={frac {1}{1^{2}}+{frac {1}{2^{2}}}+{frac {1}{3^{2}}+{frac {1}{4^{2}}+{cdots } | Somma[n=1 a ∞]{1/n^2} | T | A013661 | [1;1,1,1,4,2,4,7,1,4,2,3,4,10 1,2,1,1,1,15,...] |
1.66168794963359412129581892274995074 | Costante di ricorrenza quadratica di Somos | σ \displaystyle \sigma } | 1 2 3 ⋯ = 1 1 / 2 ; 2 1 / 4 ; 3 1 / 8 ⋯ {\displaystyle {\sqrt {1{sqrt {2{sqrt {3\cdots }}}}}}=1^{1/2};2^{1/4};3^{1/8}\cdots } | T | A065481 | [1;1,1,1,21,1,1,1,6,4,2,1,1,2,1,3,1,13,13,...] | |
1.73205080756887729352744634150587237 | Costante di Teodoro | 3 {displaystyle {sqrt {3}} | 3 {displaystyle {sqrt {3}} | 3^(1/2) | I | A002194 | [1;1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,...] |
1.75793275661800453270881963821813852 | Numero Kasner | R {displaystyle R} | 1 + 2 + 3 + 4 + ⋯ {displaystyle {sqrt {1+{sqrt {2+{sqrt {3+{sqrt {4+capitoli }}}}}}}}} | A072449 | [1;1,3,7,1,1,1,2,3,1,4,1,1,2,1,2,20,1,2,2,...] | ||
1.77245385090551602729816748334114518 | Costante Carlson-Levin | Γ ( 1 2 ) {displaystyle \Gamma ({tfrac {1}{2}})} | π = ( − 1 2 ) ! {displaystyle {sqrt {\i}=sinistra(-{frac {1}{2}}destra) !) } | sqrt (pi) | T | A002161 | [1;1,3,2,1,1,6,1,28,13,1,1,2,18,1,1,1,83,1,...] |
2.29558714939263807403429804918949038 | Costante parabolica universale | P 2 {displaystyle P_{\2} | ln ( 1 + 2 ) + 2 {displaystyle \ln(1+{sqrt {2})+{sqrt {2}}} | ln(1+sqrt 2)+sqrt 2 | T | A103710 | [2;3,2,1,1,1,1,3,3,1,1,4,2,3,2,7,1,6,1,8,...] |
2.30277563773199464655961063373524797 | Numero di bronzo | σ R r {\displaystyle \sigma _{{ Rr}} | 3 + 13 2 = 1 + 3 + 3 + 3 + 3 + 3 + ⋯ {displaystyle {frac {3+{sqrt {13}}{2}}=1+{sqrt {3+{sqrt {3+{sqrt {3+{sqrt {3+{sqrt }}}}}}}}} | (3+sqrt 13)/2 | I | A098316 | [3;3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,...] |
2.37313822083125090564344595189447424 | Costante di Lévy2 | 2 ln γ {displaystyle 2,\ln \gamma } | π 2 6 ln ( 2 ) {displaystyle {frac {\pi ^{2}}{6\ln(2)}} | Pi^(2)/(6*ln(2)) | T | A174606 | [2;2,1,2,8,57,9,32,1,1,2,1,2,1,2,1,2,1,3,2,...] |
2.50662827463100050241576528481104525 | radice quadrata di 2 pi greco | 2 π {displaystyle {sqrt {2\pi} | 2 π = lim n → ∞ n ! e n n n n {displaystyle {\sqrt {2\pi }=lim _{n{ a \infty }=frac {n!\; e^{n}}}{n^{n}{sqrt {n}}}}} | sqrt (2*pi) | T | A019727 | [2;1,1,37,4,1,1,1,1,9,1,1,2,8,6,1,2,2,1,3,...] |
2.66514414269022518865029724987313985 | Costante di Gelfond-Schneider | 2 2 2 {displaystyle 2^{sqrt {2}} | 2^sqrt{2} | T | A007507 | [2;1,1,1,72,3,4,1,3,2,1,1,1,14,1,2,1,1,3,1,...] | |
2.68545200106530644530971483548179569 | Costante di Khintchin | K 0 {displaystyle K_{{{0}} | ∏ n = 1 ∞ [ 1 + 1 n ( n + 2 ) ] ln n / ln 2 {displaystyle \prod _{n=1}^{\infty}left[{1+{1 \sopra n(n+2)}destra]^{\ln n/\ln 2}} | prod[n=1 a ∞]{(1+1/(n(n+2)))^((ln(n)/ln(2))} | ? | A002210 | [2;1,2,5,1,1,2,1,1,3,10,2,1,3,2,24,1,3,2,...] |
3.27582291872181115978768188245384386 | Costante di Khinchin-Lévy | γ γ γ γ γ γ γ γ γ γ γ | e π 2 / ( 12 ln 2 ) {displaystyle e^{{pi ^{2}/(12\ln 2)}} | e^(\pi^2/(12 ln(2)) | A086702 | [3;3,1,1,1,2,29,1,130,1,12,3,8,2,4,1,3,55,...] | |
3.35988566624317755317201130291892717 | Costante di Fibonacci reciproca | Ψ {displaystyle \Psi } | ∑ n = 1 ∞ 1 F n = 1 1 + 1 1 + 1 1 2 + 1 3 + 1 5 + 1 8 + 1 13 + ⋯ {displaystyle \sum _{n=1}^{infty }{frac {1}{F_{n}}}={frac {1}{1}}}+{frac {1}{1}}+{frac {1}{2}}+{frac {1}{3}}+{frac {1}{5}}+{frac {1}{8}}+{frac {1}{13}}+capitoli } | A079586 | [3;2,1,3,1,1,13,2,3,3,2,1,1,6,3,2,4,362,...] | ||
4.13273135412249293846939188429985264 | Radice di 2 e pi | 2 e π {displaystyle {sqrt {2e\pi} | 2 e π {displaystyle {sqrt {2e\pi} | sqrt(2e pi) | T | A019633 | [4;7,1,1,6,1,5,1,1,1,8,3,1,2,2,15,2,1,1,2,4,...] |
6.58088599101792097085154240388648649 | Costante di Froda | 2 e {displaystyle 2^{\a6} | 2 e {displaystyle 2^{e}} | 2^e | [6;1,1,2,1,1,2,3,1,14,11,4,3,1,1,7,5,5,2,7,...] | ||
9.86960440108935861883449099987615114 | Pi al quadrato | π 2 {displaystyle \pi ^{2}} | 6 ∑ n = 1 ∞ 1 n 2 = 6 1 2 + 6 2 2 + 6 3 2 + 6 4 2 + ⋯ {\displaystyle 6\sum _{n=1}^{{infty }{frac {1}{n^{2}}}={frac {6}{1^{2}}+{frac {6}{2^{2}}+{frac {6}{3^{2}}+{frac {6}{4^{2}}+{cdots } | 6 Somma[n=1 a ∞]{1/n^2} | T | A002388 | [9;1,6,1,2,47,1,8,1,1,2,2,1,1,8,3,1,10,5,...] |
23.1406926327792690057290863679485474 | Costante Gelfond | e π {displaystyle e^{\i} | ∑ n = 0 ∞ π n n ! = π 1 1 + π 2 2 ! + π 3 3 ! + π 4 4 ! + ⋯ {displaystyle \sum _{n=0}^{infty }{frac {\pi ^{n}}{n!}={frac {\pi ^{1}}{1}+{frac {\pi ^{2}}{2!}+{frac {\pi ^{3}{3!}+{frac {\pi ^{4}{4!}+cdots } | Somma[n=0 a ∞]{(pi^n)/n!} | T | A039661 | [23;7,9,3,1,1,591,2,9,1,2,34,1,16,1,30,1,...] |
Pagine correlate
- Funzione costante
- Elenco di simboli matematici
Bibliografia online
- Enciclopedia on line delle sequenze di interi (OEIS)
- Simon Plouffe, Tabelle delle costanti
- La pagina di numeri, costanti matematiche e algoritmi di Xavier Gourdon e Pascal Sebah
- MathConstants
Domande e risposte
D: Che cos'è una costante matematica?
R: Una costante matematica è un numero che ha un significato speciale per i calcoli.
D: Qual è un esempio di costante matematica?
R: Un esempio di costante matematica è ً, che rappresenta il rapporto tra la circonferenza di un cerchio e il suo diametro.
D: Il valore di ً è sempre lo stesso?
R: Sì, il valore di ً è sempre lo stesso per qualsiasi cerchio.
D: Le costanti matematiche sono numeri integrali?
R: No, le costanti matematiche sono solitamente numeri reali, non integrali.
D: Da dove provengono le costanti matematiche?
R: Le costanti matematiche non derivano da misurazioni fisiche come le costanti fisiche.